Impulsando la eficiencia y la sostenibilidad: previsión de carga basada en aprendizaje profundo a nivel de subestación


Contenido principal del artículo

Wellcome Peujio Jiotsop Foze
Adrian Hernandez-del-Valle
Francis Magloire Peujio Fozap


Este artículo presenta una investigación sobre la eficacia de las redes neuronales de memoria a corto plazo (LSTM) para predecir la carga eléctrica a nivel de subestación. La predicción de la carga eléctrica es una tarea difícil debido a la naturaleza estocástica de los datos de series temporales, que crea ruido y reduce la precisión de la predicción. Para abordar este problema, proponemos
un modelo de aprendizaje profundo basado en redes neuronales recurrentes LSTM, que evaluamos utilizando un conjunto de datos de 30 minutos disponible públicamente de mediciones de potencia real de subestaciones de zonas individuales en el área de suministro Ausgrid3. Nuestro modelo LSTM propuesto con 2 capas ocultas y 50 neuronas supera a las configuraciones alternativas, logrando un error medio absoluto (MAE) de 0,0050 en tareas de previsión de carga a corto plazo para subestaciones. Los resultados sugieren que el modelo LSTM propuesto es una herramienta prometedora para la previsión precisa de la carga eléctrica, que puede aplicarse a otras subestaciones de todo el mundo para mejorar la eficiencia energética y reducir el riesgo de cortes de suministro. Este artículo contribuye al debate en curso sobre el desarrollo de modelos fiables de previsión de la carga eléctrica, proporcionando información valiosa tanto para investigadores como para profesionales del sector

previsión de carga eléctrica, memoria a largo plazo (LSTM), redes neuronales recurrentes, aprendizaje profundo, subestación, eficiencia energética

Detalles del artículo

Peujio Jiotsop Foze, W., Hernandez-del-Valle, A., & Peujio Fozap, F. M. (2023). Impulsando la eficiencia y la sostenibilidad: previsión de carga basada en aprendizaje profundo a nivel de subestación. Panorama Económico, 19(39), 133–148. https://doi.org/10.29201/pe-ipn.v19i39.176

Artículos