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Abstract

This paper presents an investigation into the effectiveness of Long Short-
Term Memory (LSTM) neural networks for forecasting electrical load at a 
substation level. Electrical load forecasting is a challenging task due to the 
stochastic nature of time series data, which creates noise and reduces pre-
diction accuracy. To address this issue, we propose a deep learning model 
based on LSTM recurrent neural networks, which we evaluate using a publicly 
available 30-minute dataset of real power measurements from individual zone 
substations in the Ausgrid3 supply area. Our proposed LSTM model with 
2 hidden layers and 50 neurons outperforms alternative configurations, 
achieving a mean absolute error (MAE) of 0.0050 in short-term load fore-
casting tasks for substations. The findings suggest that the proposed LSTM 
model is a promising tool for accurate electrical load forecasting, which can 
be applied to other substations worldwide to improve energy efficiency and 
reduce the risk of power outages. This paper contributes to the ongoing 
discussion surrounding the development of reliable forecasting models for 
electrical load, providing valuable insights for researchers and industry 
professionals alike.
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Resumen

Este artículo presenta una investigación sobre la eficacia de las redes neuro-
nales de memoria a corto plazo (LSTM) para predecir la carga eléctrica a nivel 
de subestación. La predicción de la carga eléctrica es una tarea difícil debido 
a la naturaleza estocástica de los datos de series temporales, que crea ruido y 
reduce la precisión de la predicción. Para abordar este problema, proponemos 
un modelo de aprendizaje profundo basado en redes neuronales recurren-
tes LSTM, que evaluamos utilizando un conjunto de datos de 30 minutos 
disponible públicamente de mediciones de potencia real de subestaciones 
de zonas individuales en el área de suministro Ausgrid3. Nuestro modelo 
LSTM propuesto con 2 capas ocultas y 50 neuronas supera a las configura-
ciones alternativas, logrando un error medio absoluto (MAE) de 0,0050 en 
tareas de previsión de carga a corto plazo para subestaciones. Los resultados 
sugieren que el modelo LSTM propuesto es una herramienta prometedora 
para la previsión precisa de la carga eléctrica, que puede aplicarse a otras 
subestaciones de todo el mundo para mejorar la eficiencia energética y 
reducir el riesgo de cortes de suministro. Este artículo contribuye al debate 
en curso sobre el desarrollo de modelos fiables de previsión de la carga eléc-
trica, proporcionando información valiosa tanto para investigadores como 
para profesionales del sector.

Palabras clave: previsión de carga eléctrica, memoria a largo plazo (LSTM), 
redes neuronales recurrentes, aprendizaje profundo, subestación, eficiencia 
energética.
Clasificación JEL: Q40, Q49, C53.

1. Introduction

Load forecasting plays a crucial role in the efficient operation and planning 
of the electricity system. Accurate forecasts of electricity demand are essen-
tial for utilities to effectively manage their generation, transmission, and dis-
tribution resources, and ensure reliable and cost-effective power supply. 

Impulsando la eficiencia y la sostenibilidad: previsión 
de carga basada en aprendizaje profundo 

a nivel de subestación
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Load forecasting enables utilities to make informed decisions regarding 
capacity expansion, load balancing, and demand response programs.

According to a study by (Yaoyao, Jingling, Xueli, Chaojin, & Jian, 2022), 
load forecasting has become increasingly important in the electricity industry. 
The authors emphasize that accurate load forecasts are vital for optimizing 
resource allocation, improving energy efficiency, and enhancing grid sta-
bility. Moreover, load forecasting has gained even more significance with 
the emergence of smart grid technologies, as it enables utilities to effec-
tively integrate renewable energy sources, electric vehicles, and demand-
side management strategies.

This research aims to contribute to the field of load forecasting by pro-
posing an integrated framework that utilizes Long Short-Term Memory 
(LSTM) neural networks. LSTM networks have shown promising results 
in capturing the complex temporal dependencies and non-linear patterns 
present in load data, making them well-suited for accurate load forecasting. 
The proposed framework will be tested using publicly available data from 
the Newcastle CBD substation in the Ausgrid network.

The structure of this research is as follows: In Section I, we provide an 
overview of the importance of load forecasting in the electricity system, 
highlighting its role in resource optimization and grid stability. Section II 
presents the methodology and framework, detailing the architecture and 
training process of the LSTM neural network for load forecasting. Section III 
describes the experimental setup, including the dataset used and the evalu-
ation metrics employed. The results of the load forecasting experiments are 
presented and discussed in Section IV. Finally, Section V concludes the re-
search, summarizing the findings, discussing their implications, and sug-
gesting potential avenues for future research in this field.

Through this research, we aim to demonstrate the effectiveness of LSTM 
neural networks in load forecasting and contribute to the development of 
accurate and reliable methods for load forecasting in the electricity system.

2. An overview of the importance of load forecasting in the electricity system
2.1 Introduction to Load Forecasting

Load forecasting plays a pivotal role in the electricity system by enabling 
utilities to effectively manage their resources, balance supply and demand, 
and ensure reliable power supply. Accurate load forecasts are crucial for 
optimizing resource allocation, enhancing grid stability, and supporting 
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decision-making processes in the energy industry (ABDULLAH, y otros, 
2020) With the rapid advancements in technology and the increasing in-
tegration of renewable energy sources, electric vehicles, and demand-
side management, load forecasting has gained even greater significance 
in recent years.

Traditionally, load forecasting relied on statistical techniques such as 
time series analysis and regression models. However, these methods often 
struggle to capture the complex temporal dependencies and non-linear 
patterns present in load data, leading to suboptimal accuracy. The emer-
gence of deep learning techniques, specifically Long Short-Term Memory 
(LSTM) neural networks, has revolutionized load forecasting by effectively 
capturing long-term dependencies and modeling intricate relationships 
within the data (Cai, Yuan, Tianqi, & Zhixiang, 2021). LSTM networks have 
demonstrated remarkable success in various domains, including speech recog-
nition, natural language processing, and, more recently, load forecasting.

Accurate load forecasting is paramount for utilities to make informed de-
cisions regarding capacity planning, load balancing, and demand response 
programs. Underestimating or overestimating electricity demand can have 
substantial economic and operational consequences, such as excessive costs 
for infrastructure investments or insufficient power supply during peak 
periods. Consequently, accurate load forecasts enable utilities to optimize 
their operations, reduce costs, and enhance energy efficiency.

By providing a comprehensive overview of load forecasting’s signifi-
cance, the limitations of traditional techniques, and the emergence of LSTM 
neural networks, this research aims to contribute to the ongoing discussion 
on accurate load forecasting. The subsequent sections will delve into the 
methodology, experimental setup, and results, showcasing the proposed in-
tegrated load forecasting framework based on LSTM neural networks and 
its effectiveness in improving load forecasting accuracy.

I.2 Review of literature

Load forecasting techniques and methodologies have evolved significantly 
over the years, driven by the need for accurate predictions in the electricity 
industry. This section provides a comprehensive review of relevant literature on 
load forecasting, exploring both traditional statistical methods and the emer-
gence of deep learning techniques, particularly Long Short-Term Memory 
(LSTM) neural networks.
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Traditional statistical methods, such as time series analysis and regression 
models, have long been employed for load forecasting. These methods rely 
on historical load data, weather variables, and other relevant factors to pre-
dict future electricity demand. However, traditional methods often struggle 
to capture the complex non-linear relationships and non-stationary nature 
of load data, resulting in suboptimal forecasting accuracy (Pełka, 2023). 
Additionally, these methods may not effectively handle the temporal de-
pendencies present in the data.

In recent years, deep learning techniques, particularly LSTM neural net-
works, have gained attention for their ability to capture temporal depen-
dencies and model complex relationships within time series data. LSTM 
networks are a type of recurrent neural network (RNN) that have shown 
remarkable success in various domains, including load forecasting. By uti-
lizing memory cells and gating mechanisms, LSTM networks can effectively 
capture long-term dependencies and handle the challenges posed by non-
linear load data.

(Nada, Hamid, & Ismael, 2023) highlight the effectiveness of LSTM neural 
networks in load forecasting. Their study proposes an integrated framework 
that combines LSTM networks with probabilistic load curves to improve 
forecasting accuracy. The results demonstrate that the proposed framework 
outperforms traditional statistical methods, showcasing the power of deep 
learning techniques in load forecasting.

The literature on load forecasting also explores other aspects, such as fea-
ture selection, model evaluation metrics, and ensemble methods. Feature se-
lection techniques help identify the most relevant predictors that contribute 
to accurate load forecasts. Model evaluation metrics, such as mean absolute 
error (MAE) and root mean square error (RMSE), assess the performance of 
forecasting models. Ensemble methods, such as combining multiple models 
or incorporating external data sources, aim to further enhance forecasting 
accuracy.

I.3 Importance of accurate load forecasting

Accurate load forecasting is of paramount importance in the electricity 
industry, as it has far-reaching implications for utilities and the overall 
electricity system. This section highlights the significance of accurate load 
forecasting, discussing its implications on resource optimization, grid sta-
bility, and cost-effective power supply.
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Resource optimization is a critical aspect of the electricity system, and 
accurate load forecasting plays a pivotal role in this process. By predicting 
future electricity demand with precision, utilities can optimize the alloca-
tion of generation, transmission, and distribution resources. This enables 
utilities to make informed decisions regarding capacity expansion, en-
suring that the infrastructure meets the projected demand while avoiding 
unnecessary investments in excess capacity (Mir, y otros, 2020). Accurate 
load forecasting also aids in load balancing, enabling utilities to effi-
ciently manage supply and demand and avoid potential grid conges-
tion or overloads.

Grid stability is another crucial consideration in the electricity sys-
tem, and load forecasting contributes significantly to maintaining a 
stable grid. Reliable load forecasts allow grid operators to anticipate 
and respond to fluctuations in demand, ensuring that generation re-
sources are dispatched efficiently to meet the load requirements. This 
helps prevent issues such as voltage instability, frequency deviations, 
and power quality problems. Moreover, load forecasting supports the 
integration of renewable energy sources by providing valuable insights 
into their intermittent nature, allowing for effective grid management 
and enhanced system reliability.

Cost-effective power supply is a key objective for utilities, and accurate 
load forecasting plays a vital role in achieving this goal. By accurately pre-
dicting electricity demand, utilities can optimize their resource planning 
and procurement strategies, minimizing excess generation capacity or the 
need for expensive last-minute power purchases. This leads to cost savings, 
which can be passed on to consumers, ultimately resulting in more affordable 
electricity prices (Alhmoud, Abu, Al-Zoubi, & Aljarah, 2021). Accurate load 
forecasts also facilitate the implementation of demand response programs, 
enabling utilities to incentivize consumers to adjust their electricity consump-
tion patterns during peak demand periods. This demand-side management 
helps reduce strain on the grid, lowers the overall cost of power supply, and 
promotes energy efficiency.

The study by (Ashraful & Saifur, 2022) emphasizes the importance 
of accurate load forecasting in resource optimization, grid stability, and 
cost-effective power supply. Their integrated framework, combining 
LSTM neural networks with probabilistic load curves, demonstrates the 
potential to enhance load forecasting accuracy and improve the overall 
performance of the electricity system.
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By recognizing a comprehensive overview of load forecasting, the existing 
literature on load forecasting techniques and methodologies and the signifi-
cance of accurate load forecasting, this research aims to contribute to the 
advancement of load forecasting methodologies. The subsequent sections 
will introduce the proposed integrated load forecasting framework based 
on LSTM neural networks, addressing the limitations of traditional methods 
and aiming to improve forecasting accuracy. The research will present the 
experimental setup, analyze the results, and discuss the implications and 
potential applications of the proposed framework in the electricity industry.

3. Load forecasting framework based on LSTM neural networks

This section outlines the plan for presenting the load forecasting framework 
based on Long Short-Term Memory (LSTM) neural networks. The frame-
work aims to improve load forecasting accuracy and address the limitations 
of traditional methods.

3.1 Load forecasting framework based on LSTM

Load forecasting plays a critical role in the electricity industry, enabling utilities 
to effectively plan, operate, and optimize their resources. Traditional statistical 
methods have been widely used for load forecasting, but they often struggle to 
capture the complex dynamics and temporal dependencies present in load 
data. To address these limitations, this research proposes a load forecasting 
framework based on Long Short-Term Memory (LSTM) neural networks.

LSTM neural networks, a type of recurrent neural network (RNN), have 
gained prominence in various domains for their ability to capture long-term 
dependencies and handle sequential data. Unlike traditional statistical 
models, LSTM networks utilize memory cells and gating mechanisms to 
retain and selectively forget information over extended time intervals. This 
allows them to effectively capture complex patterns and relationships in 
time series data, making them well-suited for load forecasting tasks.

The mathematical development of the LSTM model involves understanding 
the components and computations involved in the network. The LSTM archi-
tecture consists of memory cells, input gates, forget gates, and output gates. 
These components work together to process sequential data and learn 
meaningful representations. The memory cells store information over time, 
while the input, forget, and output gates regulate the flow of information 
into, out of, and within the memory cells.
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The LSTM model can be mathematically represented as follows:
            !! = !!(!! . ℎ!!! , !! + !!) 
            !! = !!(!! . ℎ!!! , !! + !!) 

            !! = !!(!! . ℎ!!! , !! + !!) 

   !! = !! ∗ !!!! + !! ∗ !!(!! . ℎ!!! , !! + !!) 
         ℎ! = !! ∗ !!(!!)	
  

Where:

  ft is the forget gate activation at time step t.
  it is the input gate activation at time step t.
 ot is the output gate activation at time step t.
 ct is the cell state at time step t.
 ht is the hidden state at time step t.
 xt is the input at time step t.
 Wf , Wi , Wo , Wc are the weight matrices.
 bf , bi , bo , bc are the bias vectors.
 δg represents the sigmoid activation function.
 δc and δh represent the hyperbolic tangent activation function.

The LSTM model learns the parameters (Wf , Wi , Wo , Wc , bf , bi , bo , bc ) 
through a process called backpropagation, minimizing the difference be-
tween the predicted and actual load values during training (Hochreiter & 
Schmidhuber, 1997).

This research builds upon the foundations of LSTM neural networks 
and their application to load forecasting. By leveraging the power of LSTM 
models, this framework aims to improve the accuracy and reliability of load 
forecasting, enabling utilities to make more informed decisions regarding 
resource allocation and grid management.

3.2 Methodology

The proposed load forecasting framework based on LSTM neural networks 
requires a well-defined methodology to effectively capture and predict the 
complex patterns in load data. This section presents the methodology used 
in this research, encompassing data preprocessing, LSTM model architec-
ture, and training/validation strategies.
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Data Preprocessing: The first step in the methodology involves data pre-
processing to ensure the quality and suitability of the input data for the 
LSTM model. The load data is cleaned, removing any outliers or missing 
values that could potentially affect the model’s performance. Additionally, 
normalization techniques are applied to scale the data within a specific 
range, facilitating the convergence and stability of the LSTM model during 
training. Feature selection is also conducted to identify the relevant input 
variables that have the most significant impact on load forecasting accuracy.

LSTM Model Architecture: The architecture of the LSTM model is a crucial 
aspect of the load forecasting framework. This research utilizes a multi-layer 
LSTM network, allowing for the extraction of hierarchical representations of 
the input data. The number of LSTM layers, hidden units, and other archi-
tectural hyperparameters are carefully chosen based on empirical analysis 
and model performance evaluation. The model’s architecture is designed 
to strike a balance between complexity and efficiency, ensuring optimal 
forecasting accuracy.

Training and Validation Strategies: To train and validate the LSTM 
model, appropriate strategies are employed to ensure robust performance. 
The dataset is divided into training and validation sets, with a suitable tem-
poral split to capture the temporal dependencies in the load data accurately. 
The training set is used to optimize the model’s parameters, while the valida-
tion set is utilized to assess the model’s generalization ability and prevent 
overfitting. Cross-validation techniques may also be employed to further 
evaluate the model’s performance and robustness.

The methodology presented in this research follows a systematic approach 
to preprocess the data, design the LSTM model architecture, and establish 
effective training and validation strategies. By employing this methodology, 
the proposed load forecasting framework based on LSTM neural net-
works aims to enhance the accuracy and reliability of load forecasting, 
enabling utilities to make informed decisions for resource planning and 
grid management.

3.3. Experimental setup

The experimental setup section describes the dataset used for the im-
plementation of the load forecasting framework and provides details 
on the Newcastle substation, the source of the data. It also explains the 
reformatting of the dataset to adhere to a consistent data format and 
the rationale behind selecting a three-year time frame for analysis.
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Dataset description the load forecasting framework was implemented 
and evaluated using a dataset of real power load. The dataset comprises 
30-minute metered real power data for Newcastle substations in the Aus-
grid supply area. The data spans from january 1st, 2014, to December 31st, 
2016, divided into annual sets. The dataset was sourced directly from the 
original Ausgrid zone substation dataset. However, to ensure consistency 
across distribution businesses like the TransGrid network, the data was refor-
matted to adhere to the NEAR-WESCML data format for zone substation data.

Newcastle Substation and Ausgrid Network The Newcastle substation, 
located in New South Wales (NSW), Australia, is a significant infrastructure 
component of the Ausgrid network. Ausgrid is responsible for supplying 
electricity to homes and businesses in Seahampton, Rhondda, Holmesville, 
Barnsley, Killingworth, Teralba, West Wallsend, and surrounding areas. As 
a distribution business, Ausgrid operates alongside other entities like En-
deavour Energy and Essential Energy to deliver electricity to over 3 million 
residential and commercial customers throughout NSW and the Australian 
Capital Territory (ACT).

Reformatting and Data Consistency To ensure consistency and facili-
tate seamless integration into the load forecasting framework, the original 
Ausgrid zone substation dataset was reformatted to adhere to the NEAR-
WESCML data format for zone substation data. This consistent data format 
allows for a standardized view of zone substation data across distribution 
businesses such as the TransGrid network. The reformatting process en-
sures that the load data is compatible with the forecasting framework and 
can be effectively utilized for training and prediction tasks.

Selection of a Three-Year Time Frame The decision to limit the dataset to 
a three-year time frame, covering the period from 2014 to 2016, was based 
on the need to maintain data stationarity for improved training and predic-
tion. By focusing on a relatively shorter time span, the dataset can capture 
the low-demand trends associated with organic growth, which are closely 
linked to economic development, as measured by the gross domestic product 
(GDP). By keeping the dataset as stationary as possible, the load forecasting 
framework can achieve better training performance and more accurate pre-
dictions.

By utilizing the real power load dataset from the Newcastle substation 
in the Ausgrid supply area, this research aims to evaluate the effectiveness 
of the load forecasting framework based on LSTM neural networks. The 
selected dataset and its reformatting process ensure compatibility and con-
sistency, enabling accurate and reliable load forecasting analysis.
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3.4. Data preparation

Data preparation is a crucial step in developing LSTM models for sequence 
prediction problems. While the process is similar to developing recurrent 
neural networks (RNNs), there are important differences to consider. One 
key aspect is scaling the data to ensure effective learning and convergence 
of the network.

Scaling the data is particularly important when dealing with unscaled 
data that has a wide range of values. Without proper scaling, large inputs 
can slow down the learning process, impede convergence, and hinder the 
network’s ability to learn the problem effectively. Two common scaling tech-
niques are normalization and standardization, with this paper focusing on 
normalization.

Normalization involves rescaling the data from its original range to a 
range between 0 and 1. It requires knowledge of, or accurate estimation of, 
the minimum and maximum observable values. Estimating these values can 
be challenging if the time series exhibits an upward or downward trend. 
In Python, the Scikit-learn library provides the MinMaxScaler function to 
perform normalization. The process involves fitting the scaler with available 
training data to estimate the minimum and maximum values, and then trans-
forming and normalizing the data accordingly.

Another scaling technique is standardization, which rescales the distri-
bution of values so that the mean becomes 0 and the standard deviation 
becomes 1. This technique is useful when input values have different scales 
and can be necessary for certain machine learning algorithms. However, 
standardization assumes that the observations follow a Gaussian distribu-
tion with a well-behaved mean and standard deviation. If this assumption 
is not met, the results may not be reliable. To standardize the data, the mean 
and standard deviation of the observable values must be known or accu-
rately estimated.

In deep learning libraries, such as LSTM, the input sequence is expected 
to have a consistent length for all features. This means that the input data 
must be reshaped into a three-dimensional form, consisting of samples 
(typically the number of rows in the dataset), time steps (past observations 
of a feature), and features (columns of the dataset).

By appropriately scaling the data and ensuring a consistent input sequence 
representation, the LSTM model can effectively learn from the dataset and 
make accurate load forecasting predictions.



Wellcome Peujio Jiotsop Foze, Adrian Hernandez-del-Valle, Francis Magloire Peujio Fozap

136

4. Case study

In this research, a comprehensive case study was conducted to investigate 
the effectiveness of the proposed LSTM load forecasting model. The study 
utilized a dataset of real power load spanning a three-year period, specifi-
cally from January 1st, 2014, to December 31st, 2016, in the Ausgrid supply 
area. The dataset consisted of 30-minute metered real power data from 
Newcastle substations.

To prepare the dataset for the LSTM model, several steps were taken. 
Firstly, the 30-minute interval data was converted into an hourly interval 
to align with the forecasting horizon of predicting load in the hours ahead. 
This conversion resulted in a sample of 26 280 data points.

Next, the dataset was divided into a training set and a test set. The training 
set comprised the first 98% of the data, representing approximately 1 075 
days, while the remaining 2% (approximately 20 days) was reserved for the 
test set. This division ensured that the model was trained on a significant 
portion of historical data while maintaining a separate set for unbiased 
evaluation.

To optimize the performance of the deep neural models, hyperparameter 
tuning was conducted. Initially, the tuning process was performed on a sin-
gle machine, considering one configuration at a time. Various configurations 
with different combinations of hidden layer units and epochs were evaluated. 
The mean absolute error (MAE), mean squared error (MSE), mean absolute 
percentage error (MAPE), and validation MAE were calculated as evalua-
tion metrics for each configuration.

To facilitate the hyperparameter tuning process and expedite computa-
tion, the configurations were trained in parallel on individual nodes using 
Spark, a powerful distributed computing framework. This approach allowed 
for faster exploration of different hyperparameter combinations and facili-
tated the identification of the best set of hyperparameters for training the 
LSTM model.

The selected LSTM model architecture, as summarized in table 1, con-
sisted of two LSTM layers and two dense layers with 50 neurons. The total 
number of trainable parameters was 33.201. The configuration with these 
specifications demonstrated the best performance in terms of MAE on the 
training set.
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Table 1
Sequential LSTM model summary with 50 neurons

Layer (type) Output shape Param #

Lstm (LSTM) (None, 24.50) 10.400
Lstm_1 (LSTM) (None, 50) 20.200
Dense (Dense) (None, 50)   2.550

Dense_1 (Dense) (None, 1)           51
Total params 33.201

Trainable params 33.201
Non-trainable params             0

Source: own elaboration in Python with data from Ausgrid.

Table 2
Errors for various configurations of LSTM Network 

model on the training set

Configuration Hidden 
layers Units Epochs MAE MSE MAPE Val MAE

1 2 128 135 0.0051 7.2928e-05 2.5534 0.0116
2 2  50 193 0.0050 6.2276e-05 2.4550 0.0121
3 2  30 186 0.0051 7.1659e-05 2.6321 0.0113
4 2  20 184 0.0055 7.9212e-05 2.7540 0.114

Source: own elaboration in Python with data from Ausgrid.

Table 2 presents the errors obtained for various configurations of the 
LSTM Network model on the training set. Each configuration differed in 
the number of hidden layers, units, and epochs. The mean absolute error 
(MAE), mean squared error (MSE), mean absolute percentage error (MAPE), 
and validation MAE were computed as evaluation metrics.

Configuration 2, with 2 hidden layers, 50 units, and 193 epochs, achieved 
the lowest MAE of 0.0050 and MSE of 6.2276e-05, indicating its superior 
performance in capturing the load patterns. Additionally, the MAPE value 
of 2.4550 highlights the accuracy of the model’s load predictions.

The evaluation of different configurations on the training set allowed for 
the selection of an optimal configuration that demonstrated the best perfor-
mance in terms of error metrics. This configuration will be evaluated on the 
test set.
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The performance of the chosen LSTM configuration was further 
evaluated on the test set, as depicted in table 3. The results showcased the 
model’s ability to provide accurate load forecasts with low error rates. The 
MAE, MSE, MAPE, and validation MAE values obtained from the test set 
confirmed the effectiveness of the LSTM network architecture.

The table presents the performance metrics of the LSTM Network model on 
the test set. The selected configuration had two hidden layers with 50 units 
and was trained for 155 epochs. The model achieved an MAE of 0.0051, 
indicating a low average absolute error in load forecasting. The MSE value 
of 7.2928e-05 reflects the mean squared error of the model’s predictions. 
The MAPE, which represents the average percentage deviation of the 
forecasts from the actual values, was calculated as 2.4934. Additionally, 
the validation MAE, denoting the mean absolute error on the validation 
set, was obtained as 0.0112.

These results demonstrate the effectiveness of the LSTM network architec-
ture in accurately predicting the load for future hours based on the historical 
data from the previous 24 hours. The low error ratios obtained highlight the 
model’s capability to provide reliable load forecasts, indicating its potential 
for application in the electricity system’s load management and planning.

In conclusion, the case study conducted on the LSTM load forecasting 
model using real power load data from Newcastle substations demonstrated 
its ability to effectively predict load demand. The hyperparameter tuning 
process, parallel training using Spark, and careful selection of the LSTM con-
figuration yielded promising results. The findings indicate that the LSTM 
model can be a valuable tool in enhancing the accuracy and efficiency of 
load forecasting in the electricity system.

Table 3
Errors of LSTM Network model on the test set

Configuration
Hidden 
layers

Units Epochs MAE MSE MAPE Val MAE

2 2 50 155 0.0051 7.2928e-05 2.4934 0.0112
Source: own elaboration in Python with data from Ausgrid.
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5. Conclusion

In conclusion, this research focused on developing an integrated load fore-
casting framework with a specific concentration on the substation level. The 
LSTM model was employed to analyze the Newcastle CBD substation sys-
tem’s load data over a three-year period. The purpose was to predict the 
next hours’ load in the substation and automate the forecasting process. The 
results demonstrated the effectiveness of the LSTM model in accurately pre-
dicting the real power demand, with a mean absolute error (MAE) of 0.0050.

The study highlighted the significance of load forecasting in the energy 
sector, particularly with the growing importance of smart grid technologies 
and their applications in demand-side management, electric vehicles, and 
distributed energy resources. By utilizing advanced forecasting techniques, 
such as LSTM, utilities can optimize their planning, operations, and mainte-
nance processes, leading to more efficient resource allocation.

The research also emphasized the importance of data preparation, in-
cluding scaling techniques such as normalization, to enhance the perfor-
mance of deep neural models like LSTM. The data used in the study was 
sourced from the Ausgrid zone substation dataset, and appropriate scaling 
methods were applied to ensure accurate predictions.

Based on the findings, it is recommended that utilities and energy com-
panies adopt LSTM-based load forecasting frameworks at the substation 
level to improve their operational efficiency. The integration of advanced 
machine learning techniques into the forecasting process can provide valuable 
insights for decision-making, allowing for better load management, grid sta-
bility, and resource optimization.

Furthermore, future research directions could explore the application of 
LSTM models in other substation areas or different geographical regions 
to validate the framework’s effectiveness across diverse contexts. Addi-
tionally, incorporating other factors such as weather conditions, customer 
behavior patterns, and market dynamics could further enhance the accuracy 
and robustness of load forecasting models.

Overall, this research contributes to the field of load forecasting by pre-
senting a comprehensive framework and demonstrating the capabilities of 
LSTM models in substation-level load prediction. By embracing advanced 
forecasting techniques and leveraging the power of data analytics, the 
energy industry can achieve greater operational efficiency, sustainability, 
and reliability in meeting the ever-growing demands of modern electricity 
systems.
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