Dependencia en mercados financieros latinoamericanos: enfoque basado en cópulas vine
Contenido principal del artículo
Este estudio aplica una metodología de cópulas vine regulares para evaluar el nivel de dependencia entre los mercados financieros de seis países latinoamericanos (Argentina, Brasil, Chile, Colombia, México y Perú) de enero de 2006 a septiembre de 2013. Se parte la muestra en tres periodos: antes, durante y después de la crisis de 2008. El comportamiento de las distribuciones marginales se describe mediante modelos AR(1)-TGARCH que resultan modelos adecuados para describir el comportamiento de los rendimientos y su volatilidad. Encontramos que los mercados de valores latinoamericanos presentan una mayor probabilidad de pérdidas extremas que de ganancias extremas y que la estructura de dependencia entre ellos se fortalece más en los periodos de crisis.
Aas, K.; C. Czado; A. Frigessi and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), pp. 182-198.
Allen, D.; M. McAleer and A. K. Singh (2017). Risk Measurement and Risk Modelling Using Applications of Vine Copulas, Sustainability, 9(10), pp. 1-34.
Arouri, M. E. H.; M. Bellalah and D. K. Nguyen (2010). The Conovements in International Stock Markets: New Evidence from Latin American Emerging Countries. Applied Economics, 17(13), pp. 1323-1328.
Arreola, J.; S. Hammoudeh; D. Khuong and M. Al Janabi (2017). Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach. Applied Economics, 49 (25) pp. 2409-2427.
Bedford, T. and R. M. Cooke (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence, 32, pp. 245-268.
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), pp. 307-327.
Brechmann, E. and U. Schepsmeier (2013). Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of Statistical Software, 52(3), pp. 1-27.
Bucio, C.; R. De Jesus y A. Cabello (2016). Valor en riesgo anual de los mercados accionarios de México y Estados Unidos: VaR tradicional vs VaR cópulas elípticas. Estocastica: finanzas y riesgo, 6(1), pp. 83-114.
Canela, M. and E. Pedreira (2012). Modeling Dependence in Latin American Markets Using Copula Functions. Journal of Emerging Market Finance, 11 (3), pp. 231-270.
Chollete, L.; A. Heinen and A. Valdesogo (2009). Modeling International Financial Returns with a Multivariate Regime Switching Copula. Journal of Financial Econometrics, 7(4), pp. 437-480.
Choudry, T. (1997). Stochastic Trends in Stock Prices: Evidence from Latin American Markets. Journal of Macroeconomics, 19(2), pp. 285-304.
Costinot, A., T. Roncalli, and J. Teiletche (2000). Revisiting the Dependence Between Financial Markets with Copulas. Available at: http://dx.doi.org/10.2139/ssrn.1032535.
Christofi, A. and A. Pericli (1999). Correlation in Price Changes and Volatility of Major Latin American Stock Markets. Journal of Multinational Financial Management, 9(1), pp. 79-93.
Czapkiewicz, A. and P. Majdosz (2014). Grouping Stock Markets with Time-Varying Copula-GARCH Model. Czech Journal of Economics and Finance, 64 (2), pp. 144-159.
Engle, R. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), pp. 987-1007.
Fernandez, C. and M. Steel (1998). On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93(441), 359-371.
Glosten, L.; R. Jagannathan, and D. Runkle (1993). On the Relation between the Expected Value and the Volatility of the Normal Excess Return on Stocks. Journal of Finance, 48(5), pp. 1779-1801.
Gurgul, H. and A. Machno (2016). Modeling dependence structure among European markets and among Asian-Pacific markets: a regime switching regular vine copula approach. Central European. Journal of Operations Research, 24(3) pp. 763-786.
Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman and Hall.
Johansson, A. (2011). Financial Markets in East Asia and Europe during the Global Financial Crisis. The World Economy, 34(7), pp. 1088-1105.
Loaiza, R.; J. Gomez and L. Melo (2015). Latin American exchange rate dependencies: a regular vine copula approach. Contemporary Economic Policy, 33(3), pp. 535-549.
Longin, F. and B. Solnik (2001). Extreme Correlation of International Equity Markets. Journal of Finance, 56(2), pp. 649-76.
Lorenzo, A. and R. Massa (2013). Measuring Dependence in Financial Crisis: a Copula Approach for Mexico and Brazil. Economia Mexicana Nueva Epoca, 22(2), pp. 341-355.
Lorenzo, A. (2016). Dependencies conditional entre los mercados bursátiles de México y Estados Unidos. Revista de Análisis Económico, 31(1) pp. 3-14.
Nelsen, R. (1999). An Introduction to Copulas. Springer-Verlag, New York.
Okimoto, T. (2008). New Evidence of Asymmetric Dependence Structures in International Equity Markets. Journal of Financial and Quantitative Analysis, 43(3), pp. 787-815.
Ortiz, E.; C. Bucio y A. Cabello (2016). Dependence and Value at Risk in the Stock Markets from the Americas: A Copula Approach. Journal of Research in Business, Economics and Management, 5(5), pp. 761-780.
Patton, A. (2001). Estimation of Copula Models for Time Series of Possible Different Lengths, Working Paper, Available at: http://dx.doi.org/10.2139/ssm.293423.
Patton, A. (2006). Estimation of Multivariate Models for Time Series of Possibly Different Lengths. Journal of Applied Econometrics, 21(2), pp. 143-173.
Patton, A. (2006), Modeling Asymmetric Exchange Rate Dependence. International Economic Review, 47(2), pp. 527-555.
Rodriguez, J. (2007). Measuring Financial Contagion: A Copula Approach. Journal of Empirical Finance, 14(3), pp. 401-423.
Santillan, R. J.; C. Gurrola; F. Venegas y A. L. Jimenez (2018). La dependencia del Indice de Precios y Cotizaciones de la Bolsa Mexicana de Valores (IPC) con respecto a los principales índices bursátiles latinoamericanos. Contaduría y Administracion, 63 (4), pp. 1-20.
Sklar, A. (1959). Fonctions de repartition a n dimensions e leurs marges. Publications de l'Institut de Statistique de l'Universite de Paris, 8, pp. 229-231.
Stubinger, T.; B. Mangold and C. Krauss (2018). Statistical arbitrage with vine copulas. Quantitative Finance, 18(11), pp. 1831-1849.
Tsay, R. (2005). Analysis of financial time series. 2nd ed. Hoboken, New Jersey: Wiley-Interscience.
Yuan, X. and J. Tang (2018). The Impact of Exchange Rate's Volatility on Yunnan's Export to Four Lancang-Mekong Cooperation Countries: A Vine Copula Model Approach. International Journal of Intelligent Technologies and Applied Statistics, 11(4), pp. 289-300.
Zakoian, J. (1994). Threshold Heteroskedastic Models. Journal of Economic Dynamics and Control, 18(5), pp. 931-955.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.