Dependencia en mercados financieros latinoamericanos: enfoque basado en cópulas vine


Contenido principal del artículo

Arturo Lorenzo-Valdes


Este estudio aplica una metodología de cópulas vine regulares para evaluar el nivel de dependencia entre los mercados financieros de seis países latinoamericanos (Argentina, Brasil, Chile, Colombia, México y Perú) de enero de 2006 a septiembre de 2013. Se parte la muestra en tres periodos: antes, durante y después de la crisis de 2008. El comportamiento de las distribuciones marginales se describe mediante modelos AR(1)-TGARCH que resultan modelos adecuados para describir el comportamiento de los rendimientos y su volatilidad. Encontramos que los mercados de valores latinoamericanos presentan una mayor probabilidad de pérdidas extremas que de ganancias extremas y que la estructura de dependencia entre ellos se fortalece más en los periodos de crisis.

cópulas vine, TGARCH, dependencia

Aas, K.; C. Czado; A. Frigessi and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), pp. 182-198.

Allen, D.; M. McAleer and A. K. Singh (2017). Risk Measurement and Risk Modelling Using Applications of Vine Copulas, Sustainability, 9(10), pp. 1-34.

Arouri, M. E. H.; M. Bellalah and D. K. Nguyen (2010). The Conovements in International Stock Markets: New Evidence from Latin American Emerging Countries. Applied Economics, 17(13), pp. 1323-1328.

Arreola, J.; S. Hammoudeh; D. Khuong and M. Al Janabi (2017). Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach. Applied Economics, 49 (25) pp. 2409-2427.

Bedford, T. and R. M. Cooke (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence, 32, pp. 245-268.

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), pp. 307-327.

Brechmann, E. and U. Schepsmeier (2013). Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of Statistical Software, 52(3), pp. 1-27.

Bucio, C.; R. De Jesus y A. Cabello (2016). Valor en riesgo anual de los mercados accionarios de México y Estados Unidos: VaR tradicional vs VaR cópulas elípticas. Estocastica: finanzas y riesgo, 6(1), pp. 83-114.

Canela, M. and E. Pedreira (2012). Modeling Dependence in Latin American Markets Using Copula Functions. Journal of Emerging Market Finance, 11 (3), pp. 231-270.

Chollete, L.; A. Heinen and A. Valdesogo (2009). Modeling International Financial Returns with a Multivariate Regime Switching Copula. Journal of Financial Econometrics, 7(4), pp. 437-480.

Choudry, T. (1997). Stochastic Trends in Stock Prices: Evidence from Latin American Markets. Journal of Macroeconomics, 19(2), pp. 285-304.

Costinot, A., T. Roncalli, and J. Teiletche (2000). Revisiting the Dependence Between Financial Markets with Copulas. Available at: http://dx.doi.org/10.2139/ssrn.1032535.

Christofi, A. and A. Pericli (1999). Correlation in Price Changes and Volatility of Major Latin American Stock Markets. Journal of Multinational Financial Management, 9(1), pp. 79-93.

Czapkiewicz, A. and P. Majdosz (2014). Grouping Stock Markets with Time-Varying Copula-GARCH Model. Czech Journal of Economics and Finance, 64 (2), pp. 144-159.

Engle, R. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), pp. 987-1007.

Fernandez, C. and M. Steel (1998). On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93(441), 359-371.

Glosten, L.; R. Jagannathan, and D. Runkle (1993). On the Relation between the Expected Value and the Volatility of the Normal Excess Return on Stocks. Journal of Finance, 48(5), pp. 1779-1801.

Gurgul, H. and A. Machno (2016). Modeling dependence structure among European markets and among Asian-Pacific markets: a regime switching regular vine copula approach. Central European. Journal of Operations Research, 24(3) pp. 763-786.

Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman and Hall.

Johansson, A. (2011). Financial Markets in East Asia and Europe during the Global Financial Crisis. The World Economy, 34(7), pp. 1088-1105.

Loaiza, R.; J. Gomez and L. Melo (2015). Latin American exchange rate dependencies: a regular vine copula approach. Contemporary Economic Policy, 33(3), pp. 535-549.

Longin, F. and B. Solnik (2001). Extreme Correlation of International Equity Markets. Journal of Finance, 56(2), pp. 649-76.

Lorenzo, A. and R. Massa (2013). Measuring Dependence in Financial Crisis: a Copula Approach for Mexico and Brazil. Economia Mexicana Nueva Epoca, 22(2), pp. 341-355.

Lorenzo, A. (2016). Dependencies conditional entre los mercados bursátiles de México y Estados Unidos. Revista de Análisis Económico, 31(1) pp. 3-14.

Nelsen, R. (1999). An Introduction to Copulas. Springer-Verlag, New York.

Okimoto, T. (2008). New Evidence of Asymmetric Dependence Structures in International Equity Markets. Journal of Financial and Quantitative Analysis, 43(3), pp. 787-815.

Ortiz, E.; C. Bucio y A. Cabello (2016). Dependence and Value at Risk in the Stock Markets from the Americas: A Copula Approach. Journal of Research in Business, Economics and Management, 5(5), pp. 761-780.

Patton, A. (2001). Estimation of Copula Models for Time Series of Possible Different Lengths, Working Paper, Available at: http://dx.doi.org/10.2139/ssm.293423.

Patton, A. (2006). Estimation of Multivariate Models for Time Series of Possibly Different Lengths. Journal of Applied Econometrics, 21(2), pp. 143-173.

Patton, A. (2006), Modeling Asymmetric Exchange Rate Dependence. International Economic Review, 47(2), pp. 527-555.

Rodriguez, J. (2007). Measuring Financial Contagion: A Copula Approach. Journal of Empirical Finance, 14(3), pp. 401-423.

Santillan, R. J.; C. Gurrola; F. Venegas y A. L. Jimenez (2018). La dependencia del Indice de Precios y Cotizaciones de la Bolsa Mexicana de Valores (IPC) con respecto a los principales índices bursátiles latinoamericanos. Contaduría y Administracion, 63 (4), pp. 1-20.

Sklar, A. (1959). Fonctions de repartition a n dimensions e leurs marges. Publications de l'Institut de Statistique de l'Universite de Paris, 8, pp. 229-231.

Stubinger, T.; B. Mangold and C. Krauss (2018). Statistical arbitrage with vine copulas. Quantitative Finance, 18(11), pp. 1831-1849.

Tsay, R. (2005). Analysis of financial time series. 2nd ed. Hoboken, New Jersey: Wiley-Interscience.

Yuan, X. and J. Tang (2018). The Impact of Exchange Rate's Volatility on Yunnan's Export to Four Lancang-Mekong Cooperation Countries: A Vine Copula Model Approach. International Journal of Intelligent Technologies and Applied Statistics, 11(4), pp. 289-300.

Zakoian, J. (1994). Threshold Heteroskedastic Models. Journal of Economic Dynamics and Control, 18(5), pp. 931-955.

Detalles del artículo

Lorenzo-Valdes, A. (2020). Dependencia en mercados financieros latinoamericanos: enfoque basado en cópulas vine. Panorama Económico, 16(31), 111–138. https://doi.org/10.29201/peipn.v16i31.25

Artículos
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.