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Resumen

En este articulo se propone una prueba estadistica para la especificacion
de los modelos paramétricos de dos factores. Se presentan tres pruebas
diferentes. Las dos primeras se basan en una comparacion de la estimacion
de la densidad de ntcleo de la funcion de densidad desconocida y la
estimacion de la funcion de densidad marginal mediante el metodo Delta.
La ultima prueba se basa en la idea de la comparacion entre la estimacion
de la densidad de nucleo y el modelo parameétrico de la densidad de nucleo
suavizado para evitar los efectos de sesgo. En particular, esta prueba se
aplico para determinar si la dindmica de la estructura temporal de tasa de
interés de Cetes en México para el periodo 2002-2009 puede ser modelada
a partir de los supuestos de los dos modelos, el de Brennan-Schwartz y el
de Schaefer y Schwartz; los resultados de la prueba muestran que ambos
modelos continuos son rechazados y por lo tanto no son capaces de describir
los datos de los Cetes en Meéxico.
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Abstract

In this paper we propose a statistical test for the specification of parametric
models of two factors. We present three different tests. The first two are based
on a comparison between the estimate ot kernel density of the unknown
aensity function and the estimate of marginal density function by the Delta
method. The last test is based on the idea of comparison between the estimate
of kernel density and the parametric model of the smoothed kernel density
to avoid skew eftects. Particularly, this test was applied to determine if
the dynamic of the term structure of the Mexican Cetes interest rate in the
period 2002-2009 can be modeled from the assumptions of two models,
that of Brennan-Schwartz and that of Schaefer-Schwart: the test results
show that both continuous models are rejected and therefore are unable to
describe the data of the Mexican Cetes.

Keywords: continuous-time model, marginal density function, Delta method,

nonparameter estimation, diffusion process
JEL Classification: C14, C44, C51

1. Introduction

A common approach to model the term structure of interest rates is such
that express the interest rate in terms of one or more stochastic factors,
which in turn follow continuous time stochastic processes. Several studies
by Dybvig (1989) and Steeley (1991) have concluded that the variability
of rates with different maturity dates can be best explained more than
one stochastic tactor. This has lead researchers to develop time structure
models that use two or more stochastic factors. Multi factor models are
proposed by Brennan and Schwartz (1979), Schaeter and Schwartz (1984),
Longstaft and Schwartz (1992), Hull and White (1990), Fong and Vasicek
(1991), Heath, Jarrow and Morton (1992), Duffie and Kan (1995). The mod-
el of Brennan y Schwartz (1979)"assumes that the short and long rates are
the driving forces for the time structure, while the model advanced by
Fong y Vasicek (1991) include the short rate and volatility as the main fac-
tors. '

In the absence of a theoretical framework that defines in detail the term
structure of interest rates, can be testing different models with real data,
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without using any observation that coming from a set of prices derived from
interest rates. Ait-Sahalia (1996) proposes an approach in this direction, it
is assumed that the properties of a model that gives structure to terms is
determined completely by a difusion process. This process is characterized
by its two first moments of time continuum, tendency and diffusion. Each
parametric model of the term structure has a certain density function
characterized by the tendency and diffusion functions.

The statistical test is based in a comparison between the density function
obtained from a parametric model of the time structure and a non-parametric
estimate of the density function, which in turn is derived form data. The
density function is valid even if the parametric model of the time structure
is not well specified.

Nevertheless it should be pointed out that there are limits to this statistical
test: first, it is only applied to one-factor models for term structure. Second, the
most important assumption for this test is that data are smoothed when the
non-parametric estimate of the density function is constructed, that means, it
possess a high variance so the estimate introduces too much “noise” expressed
by many “illegitimate” modes (relative maximums) which in turn do not appear
in the desired density calculation, in this case, the non-parametric estimate is
less than optimal. Therefore is not clear what happens to this test when the data
are over smoothed. Thirdly, the test do no consider the skew effects inherent
to the non parametric estimate of the density function. Next, the test of Yacine
Ait-Sahalia (1996) will be explored in the aforementioned directions.

2. The model and null hypothesis

For a complete probability space (Q2,F,P) and augmented filtration
{1120 generated by a standard Brownian movement W in R¢, a time
continuum model tipically depends on a stationary diffusion process X that
takes values from some open subset D of R?, with a dynamics represented by
the Ito stochastic differential equation,

dX, = (X, p)di +o(X,,B)dW, (1)

So that forany £ inabounded subset ® < R4, u(-,f)e R4 and o(,f)e R
are the tendency and difussion functions respectively. The distribuition of
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the process is completely characterized by its tendency and its diffusion.
For example, for a one dimension stationary diffusion process, the marginal
density function can be written as

__n\B) o 2uf)
(% P) = — . ﬂ)Loew{gz ? ﬁ)}du (2)

Where the process is distributed over R and 7(ff) is a standarization
constant that ensures that density integrates to one.

Generally, for any fe & we use 7(x,[) to express the marginal density
function which is implicit in the parametric model 7 (x) to express the true
marginal density function. The null hypothesis and alternative hypothesis
are:

H, :exists p,€ O such that n(x,p,)= 7 (x)

H, 172'(-,/8):;& (-) for any fe ©

As in Ait-5ahalia (1996), our statistical test is based in a pondered integral
of the squared difference between 7(x) and 7(x,/ ),

= j (77(x)— 7 (x, ) 7 (x)dx (3)

We can use the measure [ as a pointer of the incorrect specification
of the model, because />0 and / = 0 if and only if the marginal density
function implied by the model is correctly specified. In order to obtain
a consistent of parameter f,, a non parametric method is use the Delta
method of nonparametric kernel functionals of Yacine Ait-Sahalia (1992) as
follows,

£, =minL,(B) (4)

e

where
L= (e, f)-2()) ®
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and 7(x) represents the kernel estimate of the marginal density function
7(x), e,

] & (x—=-X
A(x) = K f 6
(x) nhZ e (6)

where K() is a kernel function and 4 = A 1s a smoothing parameter,

fl

bandwidth or window that does not depend on the data. Therefore, under
H, the estimate of the Delta method of z(x,/) is 7(x, £ ) and the true and
unknown marginal density function of x, 7(x), can be estimated consistently
with the kernel estimate 7(x) regardless to the correct specification of the

parametric model.

If the estimates of 7(x) and 7(x, ) are #(x) and r(x,,) respectively, they
can be substituted in the definition of I producing the following estimate of /,

1, = [(£(x)=7(x.8,))’ #(x)dx (7)

3. The limit distribution of I under H_

The following assumptions are used to obtain the limit distribution of 7 .

Premise 1. For any fe ©, o(,pB) is locally bounded and is Borel measurable.

Premise 2. Let be g a measure of induced probability over R by X and J.R Apdg =0
for any bounded and continous function ?(x) in RY, where A is the infinitesimal
generator created by the diffusion process {X,,t 20}.

Premise 3. The kernel function K(-) is a symmetric and bounded function in R°
that satisfies:

[ KGu) | du<on||ull’| K(u) >0 when || u |-,

j‘uI.K(u)du =0, | K(u)du =2ko,, for1<i,j<d,ke R*
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Premise 4. The density function 7(-) and its partial derivative of second order are
bounded and uniformly continuous in BBR".

Premise 5. The smoothing parameter h = h_satisfie h — 0, nh' — o0 when n— o,

Premise 6. The function of parametric density 7(u,[) and its partial derivative of
second order respect [ are uniformely bounded and uniformly continuous. 7(u,[3)

and 1its partial derivative of second degree respect x are bounded and uniformly
continuous in R4 Also, J‘|D’ﬂ(u}ﬂ)idx<00, where D'm(u,f) is a pxI partial
derivative vector of first degree of the function z(u,[s) respect 5.

Premise 7. The succesion of observed data { X,,1<i<n} is strictly stationary.

Premise 8. Exist f.€ © such that f, — B. a.s and

e o

B, =B+ | @ )d(F, )= Fu)+o,| n

- .

[ 4 __1\\
:/[))*_I.”;(@F(Xf)_EQF(Xi))+OgJ\n 2/ (8)

where F() and ¢.() are the function of cumulative density and the
derivative of F(-) respectively, associated with the unknown function of
marginal density 7z(-).

Premise 9. The  parameters space © C RY is  compact and

E{@7(u, B,)0B) O (1, B, VOB has a full range.

* Premise 1 guarantees the existence and uniqueness of a solution for
the stochastic differential equation. Given that our model is a stochastical
homogeneus differential equation in time and of Markovian type, also
this premise is condition enough to ensure a non explosive solution.

* Premise 2 ensures that the solution process is stationary.

* Premises 3, 4 and 5 are used to obtain a limit distribution of the integral
of the squared error for the estimate of the kernel density.
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* Premises 6 and 8 are used to examine the effect of the estimate of
7(u,f3,) by Z(x) over the limit distribution I . In particular, the last term,
0,(1), from the right side of the equation (8), can be guaranteed assuming
that the derivative ¢, (-) is a cadlag bounded function.

 Premise 7 serves the purpose to limit the dependence of the discrete
observations so that asymptotic theory can be used.

* Premise 9 ensures that the linear term in the Taylor expansion of a
functional is not degenerate. If the linear term degenerates then the
asyntotic distribution might be given by a term of greater degree present
in the Taylor expansion.

From equation (7) we can write the squared integrable difference between
7(x) and 7(x) as follows,

1, = ()= 2 (x))* £(x)dx + [(F(x) = 7 (x))’ #(x)dx

- 2| (#(x) = 7 ())F (X)— 7(x))A (x)dx

:[ +[2n_2[3n (9)

1n
Theorem 1. Let be c(n)=(nh")" J.K2 (;vc)«:bcj.;’r2 (xX)dx + j(Ei?(x) —(x)))m(x)dx,
V{x)= Zip%(x)/@xf and we define

d(n) [ 0'2h7? sionh?t S
n) = |
Unh® s mk®t 50

then, under the conditions established over K(-) and () and assuming that
nh™ — o, when n— o, we have

d(n)(1,,—c(n)=2d(n)(n’h*)" > H(X,X),)

I<i< j<n

14

+2d(n) j (#(x)— EAQONER(x) = 2(x)m(x)dx+ O, (d(m)yn " h74?)

: _ v _v Y\ — — X, °
where HH(.X”X}‘):J‘ K[x X; }_EK[JC X:] K(x J _EK[I 7 _‘ﬁ(x)dx
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2 27 2d Y} —‘ :
ah| (] Y H (X, X)) — 20,N

1<i< j<h _I

n"h j (202 (x)dx—{ j V27 ()] (x)dx )
where

ol = I[V (V7 (x)dx - {j[V ‘r(x))r’ (;vc)tsl’.ac}2

o, = I?Z'4 (x)de[J.K(u)K(u + v)du]z dv}

i ko N sinh®™ = w0
d(n)I, —c(n))— l
R By

Theorem 1 implies that the limit distribution of the integrable squared
error of #(x), I, depends upon the amount of smoothing that is applied to
the data. The limit distributions form Theorem 1 can be used to construct
of proof for the null hypothesis 7(x)=7,(x) against the alternative
m(x)# r,(x), where 7m,(x) is a density function which is completely
unknown. Furthermore, in order to Theorem 1 to be observed, the smoothing
parameter & must satisfy nh*® > o or nh"** - 0 (under smoothing data)
or nh'™* —> o (over smoothing data). So d must satisfy d <3 for under
smoothing data. Nevertheless, when the null hypothesis is composite, that
is, there are a finite number of unknown parameters, the last two terms of
the right side of the equation (9) must be taken under consideration. For this
purpose, the Taylor expansion and premise 8, under H, we have

#(x) - 7(x, By) = D' (x, By 11 S (0r(X) - Epp (X)) +0,(n?)

then we express I, as follows,

L, =J,, (By)+J,, (D)

where

J1,(By) = [[#(x) = EAO)IIZ (x) = 7(x, By) A (x)dlx (10)

and
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T2, (By) = [[EA(x) = m(0)][7(x) — 7 (x, By} (x)dx (11)

Ihe following lemma summarizes the behavior of J (f,) and J, (53,),
and therfore that of /. .

Lemma 1. Under premises 1-9, for any 0 <6 <1 we have
a) J, (B,)= Op(n_é" yand also n'“h°J, ()Bg)j%kUSN where
0'32 = {J.D’ﬁﬂ ﬁ(x,,,[)’ﬂ)sz(x)dx}VUDﬁﬂfr(x,ﬁU )szr(x)dx}
V= Var(pp (5)+ 3Cov0- (X, (X,.0)

d
consequently 1, =J, (f,)+0,(n°) y n'?h2l, —>ko,N

b) If the null hypothesis is satisfied, then 7,, =0, (n™") and also
d

n'*h>I, —-ko N

If the null hypothesis is satisfied from equation (11) and Lemma 1 we
obtain the following expression, '

I,=1,-2J,,(8,)+0,(n?) (12)

this equation lays down that the parametric estimate of 7(x,f ) under
the effects of the null hypothesis is the limit distribution of / only through
J,,(B,). Therefore if the first term of the right side of equation (12) dominates
the second term asimptotically, which is the case for under smoothed data,
the parametric estimate of 7(x,f ) under the null hypothesis does not
affect the limit distribuition of / as Yacine Ait-Sahalia (1996) demonstrates
for d = 1. Nevertheless, if data are over smoothed, the limit distribution of A
will be affected by non parametric estimates as the following theorem shows.

Theorem 2. Under the assumptions of Lemma 1, if the null hypothesis is satisfied

and e <o <1, then we have

2(d +4)
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dond - —el ))ﬂ 2ko,N sinh™* - w
14 — C\H
S T 20,N si nh™* =0

where c¢(n),d(n),c;,0; are the same as in Lemma 1, G. =V +2V, and:

V= Var(Vin (X)) = 2[D (. f)V 7 (y)dy

+ [D'z(y, BV 7 (0)dvx Var (p(X,)x |Dr(y. SV (VY (13)

Wy = iCov(V (X Y, V(X)) + (J.D’ﬁ(y,ﬁ)vzzr(x)dx)
<> Covlp, (X)) (X )< ([ D (3. IV ()dly) (14)

- (D, BV H(n)dyx Y Cov(VA T (X)), 0, (X))
k=2

- [Dr(r IV (p)dyx Y CovV (X, )., (X)) (15

Corollary 1. Under the assumptions of Lemma 1, and if the null hypothesis is
satisfied, we have

d
a) If nh"* - oo, then n'"h™°[I, - I[Ei(x)—ﬁ(x,ﬁﬂ ) #(x)dx]—2ko , N

1

b)  If nh®** >0, then nh™*[I, pd
7

J.K2 (u)du J.P’Z'z (ﬂ)du] i) 265N

4. Statistical test and its asymptotical distributions

The following statistical tests are based upon the estimates of o, and o, 0]
can be consistently estimated by : Zf_lﬁf’()( ,. )J'[J‘K (K (1 +v)du) dv. To ob-
nT "

tain consistent estimates of o, we define
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.'—-'"'-.-."-‘-—

V ar(V:z (X)) = [(V(0) 2(0dv = {[ (V20D (1))

e —

Zk:} CoApp (X))@ ( X )=

(H 2 ln—k /l 7 \21
(X, )= (X :
~1-k+G, in;@’%( i) \n;%( ) JF

_,_,.--l"'_"'l-.._

> Cov(Vir(X),Vr(X,,))=

&2 %12’% 2 (132 \ZL
VIRV -| VIR |
 1—k+G, tn = | : = 3 J
ZH Cov(V°r(X,), 0. (X)) =
2 “fv%(x’) X.0- 53V Y0, (X \!
- l—k-l' G” 1\;1 . i (PFH i+k Hz — j I-:ltpp‘n i+ k J "
> o Cov(V 7 (X,,,).0r(X))) =
S 2 WIS e (- LIV )Y e (X))
- 1—k+ G” in - i+Kk F’H I nz — i+k - Fn iy J s

where G is a delay of a selected truncate such that limG, =+ y G, =O0(n'").
This is the estimate of the spectral density at zero see (Yacine Ait-Sahalia, 1992).
It is possible to find consistent estimates of V. and V| substituing the previous
estimates in equations (13) and (14). Using the results obtained tests values for
H,:7n(x)=7n(x,[,) against the general alternative H, :7(x)# 7(x,f) for any
fe®.
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5. Extension of the statistical test of Yacine Ait-Sahalia

Now we define the statistical tests as follows

I n'“h {1l _,[[Kh *F(x)— 7 (x)] #(x)dx) (16)
2k&,
r- h™"[nh‘I - J‘Kz(z)dzjﬁz(z)dz] (17)

26,

where K, *ZF(x)=h"* IK(x;u }?f(u)du

d+0o
Theorem 3. Under premises 1 to 9, if H, is satisfied and 2(; 4 <0 <1 then

d
a) If nh"* > thenT —

"} d
by If nh®"* > 0thenT, —>N

Theorem 3 stablishes that a statistical test can be constructed to a
significant level & to prove H_ against H, that correspond to a diverse amount
of smoothing applied to data. Also it is pointed that the statistical test 7, is
an extension Yacine Ait-Sahalia (1996) test that can be applied to two factors

model, by the small value of the smoothed parameter.

6. Statistical test for skew correction

As established before, the skew introduced by the kernel estimate of the density
- function has a significant influence in the test of H, based upon the estimate of
the squared error integral. The skew effects are reflected upon the restriction
of the smoothing parameter, which can decrease to zero and cannot decrease
too fast or too slow when the size of the sample tends to infinite. Based upon
different restrictions in the smoothing parameter, two different tests can be
obtained. Now, we present a statistical test that applies to any diffusion process
of finite dimension, but also does not depend on the amount of smoothing
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applied to data. Under H, the expected value of the non parametric estimate
A(x) 18 EA(x)=K, *7n(x,[,) = J.h“’K(X;H yir(u, B, )du . Therefore, to eliminate

the skew effects, we can construct an statistical test for adjusted skew based
upon the weighted integral of the square difference divided by the non
parametric estimate of the marginal density function implied in the data and
the estimate of smoothed kernel of the function of marginal density implied
by the parametric model,

J, = [[#(x)= K, *Z (x)] dx
We can decompose / as follows
J = j[ff-(.x) — EF(X)) 2(x)dx + j (EF(x)— K, *7(x)F #(x)dx
. j [#(x)— EZ(O)EF(x) - K, * 7 ()] (x)dx

= [[2(x) - EF () #(x)dx+ J,, +2J,,

Theorem 4. Under premises 1 to 9, if H, 18 observed and e <o <1, then
2(d +0)
nh®’[J — | sz(z)dsziz(z)dz]
T = " nhf | _Q;N (13)
’ 26,

where & is defined as before.

The asymptotic distribution of the adjusted skew test is the same
regardless of the nature of the data as under or over smoothing. It is also
important to note that the adjusted skew test can be applied to de marginal
density function of any diffusion process of finite dimensions.

7. Parametric models of two factors

There is a general acceptance that one factor models of the term structure
cannot succesfully explain several characteristics of bond returns. The
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reason for this is that the factor of the term structure and the returns and
outcomes of the bonds must be perfectly correlated. As we have seen in the
Introduction, several authors accept that moved by two uncertainty factors
at least. So actual research focus into models of term structure that uses two
state variables or stochastic factors. These models are mutually exclusive
and do create different values when used to predict the price derived from
different rates. From the two model research we can find that of Brennan
y Schwartz (1979) and that of Schaefer Schwartz (1984) that create their
specifications based upon stochastic processes using two interest rates.
Before we use the specification test of Brennan-Schwartz and the model
ot Schaefer-Schwartz, we will find the marginal density functions of such
models.

7.1 Models of term structure of
Brennan-Schwartz and Schaefer-Schwartz

7.1.1 Model of Term Structure of Brennan-Schwartz

Brennan and Schwartz (1979) developed a straddle model for term structure
of interest rates under the assumption that all the term structure can be
expressed at any time in terms of the outcomes of instruments of short and
long terms. If r defines the instant interest rate and / is the long term interest
rate its model can be expressed as,

dr.=rla(lnl —p-Inr)+1201dt+ (o, r)dW, (19)

dl =[1 (k(0-1nl)+1/2c]1dt + (o, 1 )dW, (20)

where p is the difference between the middle levels of In/ and 1nr;, a is the
adjustment coefficient for the speed in which Inr returns to (In/— p); k is the
adjustment coefficient for the speed in which In/ returns to the mean level
of 8; and E(dW,dW,)=¢ Using the Ito’s lemma, the previous equations can
be written as,

dinr, =a((Inl - p)—Inr)dt+oc dW, (21)
dinl =k(@—Inl)dt+o,dW, (22)

20
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To put into practice our test, we have to estimate the unknown
parameters assumed under the null hypothesis. The bivariate processes for
Inr and 1nl is stationary in a joint form if & and k are greater than zero.
Also, the solution of equations (21) and (22) is a Gaussian process if and
only if the initial value is constant or normaly distributed. As a matter of
fact the solution of the linear stochastic differential equation (21) and (22)
can be expressed as '

X, = p+exp(A(t—1))- (X, —u)+ [exp(4—s)BdW  (23)
where
. e ‘0_ »n\ (_ \ (2 (AW,
X -| nf’}} [ - ¢ p} (o «a - P 02} P 1
- \n/, . 0 L0 =k 0 o AW,

Otherwise, if @ and k are greater than zero, then the solution follows a
Gaussian stationary process. For a stochastic stationary process, the marginal
density function equals the density of the initial observation, theretore, we can
obtain a stationary marginal density function of this process once we have the
density function of the initial random variable. The marginal density can be
obtained with equation (22) as follows,

| l o '
f(X)= L eXp(—(X — ) 7 (X — ) (24)
27 | Z .
where
E:/Z“ Z“12\ X:/h] rr\
201 ) \111 /, y,
o’ o 1 o I 2 1
>.,.= " +20°0;5( ) )+0;( (. — + %
20 a—k o (a—-k) 2k (a+k) 2«
(a+Kk)
2x
| . a 1 1
2., =200,0( +o —
2=20,08( D+l G = )
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2y =2,
5, =0
227 5y

7.1.2 Model of term structure of Schaefer-Schwartz

Schaeter and Schwartz (1984) use the same information of the interest rate
as Brennan and Schwartz (1979), but express its model in terms of the long
term interest rate and the difference between it and the short term interest
rate. This is a redefinition of the variables that make possible to obtain an
analytical solution for the problem of valuation. Furthermore, Schaefer
and Schwartz assume that the difterence tollows the process of Ornstein-
Uhlenbeck (a process of the reversion of the mean and the constant diffusion
function). In financial research, the Ornstein-Uhlenbeck process has been
used to model the short term interest rate. Nevertheless, it is reasonable to
assumme a better probability that it is the difference and not the short term
rate what follows this kind of process due to the fact that the model allows
negative values. The specific form of the stochastic process of Schaefer and
Schwartz is,

ds, :ﬁ(_Q'“S;)df"'}’dWl (25)

dl. = (S,1L,0)dt+o (H)dW, 26)

where dW, and dW, are standard Wiener processes with
E[dW]=E[dW,]=0,dW°=dW, =dt. As in the model of Brennan-Schwartz,
Schaeter and Schwartz assume that the difusion function of the console rate
depends on its level. The tendency function of the console rate stays as in its
general form. The process of Ornstein-Uhlenbeck, dS, = f(a - S, )dt+ W, has

a transition density function given by

' o SBUg)”
f(S =s,t|S =s,,1,)= I exp{—(S a—(s,—a)e )

0 22({) 21/2(:1‘) }
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where

2
O [1 - 8*2%”’“-*’@)].

vi(t) = 25

Let us suppose that the spread process shows the property of reversion
to the mean (f > 0), then when ¢, &> —x or (t-¢,) — «, the marginal density
of the stochastic process is invariant through time, i.e., the spread process is
stationary and the marginal density function can be expressed as follows:

o [ ﬂ(s—cx)zﬁ

CXD<s — >
g T e

For stationary diffusion processes, the only stationary processes with
explicit transition density functions are those who have the linear functional
specification for the tendency function and the specification of the cuadratic
function for the diffusion function.

7.2 Empirical tests and specification analysis of the term structure
of the models of Brennan-Schwartz and Schaefer-Schwartz

The time series used in this analysis include daily observations of Cetes for 1
day to 10 years of maturity. The analyzed sample period covers from july 9*
of 2002 up to december 7™ of 2009, which comprises 1 867 observations for
each term. Based upon the stationary density functions derived previously,
we can estimate the unknown parameters, reducing to a minimal expression
the cuadratic error between the estimate of the non parametric density and
the density of the parametric model. The results of the parametric estimate
of both models are shown in tables 1 and 2.

The estimates of ( j K2 (2)dz)( j 72 (x)dx) and ( j ( j KK (u+ x)du)* ) j;rr“ (x)dx)
are respectively:

K20 3, (log(r).log)

(J([K @K@+ x)duy e > adlog(rn),log(h )
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| Tasral |
Parameter values estimated with the Brennan and Schwarts model

Parameter 2 k G )2 o of o
Estimate | 0.98725 | 0.23873 | 0.10191 i 0.4956 | 0.21096 | 0.24627
' 0.01533 '

TABLA 2

Values of the parameters estimate with the Schaefer and Schwartz model

Parameter o Js; o
Estimate 1.7612 1.50114 0.1796

Taking a critical value of 6.32 to obtain a test level of 0.05%. For the normal
kernel, the two kernel constants are:

f]rﬁdzl j f_lm“ﬁdzl
(JKE(Z)dz)={ 2\1/; : I(J.K(H)K(’M-I-I)dlfy dx =3 2\/127?
[.‘4; ifd=2 L S if d =2

To estimate the marginal density, the smoothed parameter s = hisselected
such that lim,.-7h" =% and lim,.nh’ =0. The quality of the estimate of the
density depends mainly on the selection of the smoothing parameter rather
than on the kernel. We select h=¢,n™'", where ¢ = c(In(n). ¢ is choosed such
that it minimizes the mean cuadratic integrable error of the estimate. The
results of this test are shown in Table 3. Both models Brennan-Schwartz
and Schaefer-Schwartz are rejected with a significance level of 0.05%. The
main reasons for rejection of both models are: first, the constant diffusions
limit volatilities to be uniformly increasing. Second, if a model has.a linear
especification for the drift and also has a constant diffusion, as in the case
of Brennan-Schwartz and Schwartz-Schaefer, the parameters founded in
the tendency and difussion functions might not be homogeneous, that is,
shifts in the economical regime implies the possible lack of stationarity of the
parameters during the modeling process.
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TAaBLA 3
Tests of parametric specification of two factor models of time continuum

Brennan-Schwartz.
Function of Tendency Function of | Statistical Test [ | Statistical Test Il | Critical Result
Diffusion Value
L, I,
rla(lnl—p-Inr)+1/202| T ¥ 46.2792 1.645 | Reject
| [[(k(@—-Inl)+1/207)] o, [ 21.48973 1.645 Reject
Schaefer-Schwartz
pla—S)u(s,l1) 4 75.07685 | 1.645 | Reject
N 123.97681 1.645 | Reject

8. Conclusions

It was proposed a statistical test for the specification of parametric models
of two tactors. We present three different tests. The first two are based upon
a comparison between the estimate of the kernel density of the unknown
density function and the estimate of 7(x,f) by the Delta method. The last
test is based upon the idea of comparison between the estimate ot the kernel
density and the parametric model of the smoothed density kernel to avoid
skew effects. The advantage of the last test respect the first two tests is its
validity for under smoothed data and also over smoothed data. This test
can be applied in many financial process which of research importance.
Particularly, this test was applied to determine if the dynamic of the term
structure of Cetes can be modeled from the assumptions of two models,
that of Brennan-Schwartz (1979) and that of Schaefer-Schwartz (1984), the
test results show that both continuous models are rejected at a 5% level as
accurate describing the dynamic ot Cetes. Finally the causes for rejection
were analyzed for both models.
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